CHAPTER 2 PRACTICE EXERCISES (*OPTIONAL)

2-01 Complex Numbers

1. Explain how to add complex numbers.

Mixed Review

- 5

15. If $f(x) = \frac{x+1}{x-2}$, evaluate f(2+5i).

16. (1-05) Find zeros of $f(x) = x^2 - 9$.

equation of the best fitting line.

y = 1. Find y when x is 8.

10. $x^2 - 8x + 17 = 0$

function shown in the graph.

graph is increasing and (d) decreasing.

17. (1-05) Find the (a) domain, (b) range, (c) interval where the

18. (1-07) Describe how the graph of the function is a

19. (1-10) Draw a scatter plot for the data provided. Find the

20. (1-10) y varies inversely with the square of x. When x = 2, then

1 2 3 4 5 108642

transformation of the graph of a parent function: $f(x) = -(x+2)^2$

2. (a) 4 - 3*i*, (b) -5*i*

3. (a) -2 + 5i, (b) 3

Simplify. Write the result in standard form.

Plot the complex numbers on the complex plane.

4. $\sqrt{-25} + 2\sqrt{-9}$

- 5. $\frac{\sqrt{-50}-\sqrt{-8}}{}$
- 6. (1-9i) + (-3-5i)
- 7. (4-6i) (2-7i)
- 8. (2i)(3-i)
- 9. (2+4i)(1+i)
- 10.(-1+2i)(4+3i)
- 11. $\frac{3-5i}{2i}$
- 12. $\frac{-4+i}{2}$

Evaluate the function for the given complex number.

- 13. If $f(x) = x^2 + x$, evaluate f(-2i).
- 14. If $f(x) = x^2 2x + 7$, evaluate f(3 4i).
- 2-02 QUADRATIC EQUATIONS

the vertex.	Solve the equation.
Rewrite the quadratic functions in standard form and give	7. $m(x) = -2x^2 - 4x + 8$
1. What is the advantage of writing a quadratic function in standard form?	6. $k(x) = 3x^2 - 54x + 244$

the vertex.	Solve the equation.
$2. f(x) = x^2 - 6x + 10$	8. $x^2 + 24 = 0$
3. $g(x) = 2x^2 + 8x + 3$	9. $x^2 - 4x + 1 = 0$

4. $h(x) = 3x^2 - 24x + 55$

Determine whether there is a minimum or maximum value $11.4x^2 - 4x + 13 = 0$ for the quadratic function. Then find the value and the axis of symmetry. Find the general form of the equation of the quadratic

5. $j(x) = -x^2 - 2x - 5$

	* *	
	2	
	8 -5 -4 -3 -2 (-10 1 2 3) 4	
12.		

5 6

	5	
	4	
	3	
	2	
1	1	
-4 -4 -3 -2	-1 0	/1 2 3 4 5
	-2	r
	13	
	1	
	1 Ĩ	

Graph the symmetry

$14. \ g(x) = -x^2 + 2x + 3$
15. $h(x) = -2x^2 - 4x$

13.

16. $j(x) = \frac{1}{2}x^2 + x - 4$

2-03 POLYNOMIAL EQUATIONS

```
1. What is the end behavior of a polynomial function with odd 8. g(r) = r^3 + 3r^2 - 10r
  degree if the leading coefficient is positive?
```

2. If the graph of a polynomial just touches the x-axis and then changes direction, what can be concluded about the factored form of the polynomial?

Find the degree and leading coefficient for the given polynomial.

3. $g(x) = -2x^2 + 4x^4 - 5x$

Describe the end behavior of the functions.

4. $f(x) = -x^4 + x^3$

5. $g(x) = 2x^3 + 3x^2 + 5x - 17$

Find the intercepts of the functions.

6. h(t) = 3(t+2)(t-1)(t+3)

7. $f(x) = x^4 - 81$

17. Vertex (7, 18), opens down

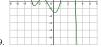
Problem Solving

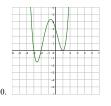
- 18. Find the dimensions of the rectangular dog run with the greatest enclosed area if there is 50 feet of fencing and one side will be a side of the house and not need fence.
- 19. A fountain shoots a stream of water from a height of 3 feet at a speed of 24 feet per second. The height in feet of the water can be modeled by $h(t) = -16t^2 + 24t + 3$. What is the maximum height of the water?

20. Coveleski stadium in South Bend, Indiana, holds 5,000 spectators. With a ticket price of \$15, the average attendance has been 1,050. When the price dropped to \$12, the average attendance rose to 1,200. Assuming that

attendance is linearly related to ticket price, what ticket price would maximize revenue?

Determine the least possible degree of the polynomial


Mixed Review


he quadratic function and give the vertex, axis y, and intercepts.	of 21. (2-01) Simplify $(2 + i)(1 - 2i)$
$x^2 + 2x + 3$	22. (2-01) Simplify $\frac{2i}{3-i}$
$x^2 - 4x$	23. (1-10) The drag, D, of a body falling through a fluid varies directly with the square of the speed, s. If the drag is 90 N at a speed of 30 m/s, find an equation relating D and s. Then what is
$x^{2} + x - 4$	speed of 50 m/s, find an equation relating D and s. Then what is

Use the vertex of the graph of the quadratic func	tion and the 24. (1-09) Find the inverse of $f(x) = x^5 - 32$
lirection the graph opens to find the domain a	nd range of
he function.	25 (1-05) Find the zeros of $k(t) = 2t^2 - t - 1$

$x^2 + x - 4$	the drag at 50 m/s?
rtex of the graph of the quadratic function and the the graph opens to find the domain and range of	24. (1-09) Find the inve

function shown.

Graph the polynomial function using a graphing calculator. 19 Based on the graph, determine the intercepts and the end behavior.

11. $f(x) = x^2(x+2)(x-2)$

12. $f(x) = -2x^4 - 4x^3$

Use the information about the graph of a polynomial function to determine the function. Assume the leading coefficient is 1 or -1. There may be more than one correct answer.

- Degree is 2. End behavior: Falls to the left and falls to the right.
- 14. The y-intercept is (0, 0). The x-intercepts are (0, 0), (3, 0). Degree is 3. End behavior: Rises to the left, falls to the right.

Find the zeros and give the multiplicity of each.

15. $f(x) = x^4 + 6x^3 + 5x^2$

17. $g(x) = (x+3)(x-1)^2$

16. $f(x) = -2x^4 + 20x^3 - 50x^2$

Use the graph to write the polynomial function of least degree.

Use the given information about the polynomial graph to write the function.

20. Degree 5. Zeros of multiplicity 2 at x = 2 and x = -1, and a zero of multiplicity 1 at x = 3. y-intercept at (0, 6).

Problem Solving: Use the written statements to construct a polynomial function that represents the required information.

13. The y-intercept is (0, 4). The x-intercepts are (-2, 0), (2, 0). 21. An ripple is expanding as a circle on a pond when a pebble was thrown into it. The radius of the circle is increasing at the rate of 8 inches per second. Express the area of the circle as a function of t, the number of seconds after the pebble hit the water.

> 22. A rectangle has a length of 20 units and a width of 16 units. Squares of x by x units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume of the box as a polynomial function in terms of x.

Mixed Review

Graph the polynomial functions. Identify the x- and y- 23. (2-02) Sketch the graph of $f(x) = -x^2 - 3x + 4$.

intercepts, multiplicity, and end behavior. 24. (2-02) Rewrite the following quadratic function in standard form and give the vertex. $g(x) = 2x^2 - 28x + 90$

18. $k(x) = (x - 3)(x + 2)^2$

25. (2-01) Solve $0 = x^2 - 4x + 5$.

2-04 Dividing Polynomials	
1. What is true if division results in a remainder of zero?	7. $(2x^3 - 5x^2 - 13x + 4) \div (x - 4)$
Use long division to divide. State whether the divisor is a factor of the dividend.	8. $(3x^3 + 15x^2 - 5x - 25) \div (x + 5)$
2. $(x^2 + 2x - 5) \div (x + 2)$	9. $(5x^3 + 2x - 10) \div (x - 2)$
3. $(x^3 + 2x^2 - 19x + 12) \div (x - 3)$	10. $(4x^4 + 3x^3 - 7x^2 + 15x) \div (x+3)$
4. $(3x^3 + 2x^2 - 10x + 19) \div (x + 4)$	11. $(x^4 + 2x - 5) \div (x - 4)$
5. $(6x^3 + 11x^2 - 13x - 24) \div (2x + 3)$	Use synthetic division to divide with a complex number.
6. $(3x^4 - 5x^3 + 5x^2 + 12x - 16) \div (x^2 - 2x + 4)$	12. $(x^2 + 4) \div (x - 2i)$
Use synthetic division to divide. State whether the divisor is	13. $(x^4 - 4x^3 + 5x^2 - 4x + 4) \div (x + i)$
a factor of the dividend.	Problem Solving

- 14. The volume of a box is $2x^3 + 7x^2 4x$, the width is x, and the 17. (2-03) Graph the polynomial functions. Note x- and y-intercepts, length is x + 4. What is the height of the box?
- 15. The area of an ellipse is $\pi(2x^3 + 5x^2 + 3x + 2)$, and the minor 18. (2-02) Find the dimensions of the rectangular corral producing axis is x + 2. If the area of an ellipse can be found with $A = \pi ab$ where a is the major axis and b is the minor axis, what is an expression for the length of the major axis?

Mixed Review

the greatest enclosed area given 150 feet of fencing and using the barn for one side of the corral.

multiplicity, and end behavior: $f(x) = x^3 - x^2 - 9x + 9$

19. (2-01) Multiply (3 - 2i)(4 + 5i)

20. (1-07) Sketch a graph of the function as a transformation of the graph of one of the parent functions: $f(x) = -(x+2)^2 + 3$

16. (2-03) Find the zeros and give the multiplicity of each zero: f(x) $=x^3 - x^2 - 9x + 9$

2-05 RATIONAL ZEROS OF POLYNOMIAL FUNCTIONS

1. What is the difference between rational zeros and real zeros?	greater than the width. The height is three times the width. The volume is 675 cubic inches.
Use the Remainder Theorem to find the remainder.	Mixed Review
2. $(2x^3 + 5x^2 - 2x + 6) \div (x - 2)$	12. (2-04) Using synthetic division, decide if the first expression is
3. $(x^4 + x + 1) \div (x + 3)$	a factor of the second: $(x + 3)$, $(2x^3 + 7x^2 + 4x + 3)$.
Use the Factor Theorem to find all real zeros for the given polynomial function and one factor.	n 13. (2-04) Divide using long division: $(2x^3 + 7x^2 + 4x + 3) \div (x + 3)$.
$4. f(x) = x^3 - 4x^2 + x + 6; x - 3$	14. (2-03) Find the zeros and multiplicity of each zero for $h(x) = x^{2}$
$5. f(x) = 2x^3 - 7x^2 - 5x + 4; x + 1$	$-6x^3+9x^2.$
$6. f(x) = x^3 + 2x^2 - 3x - 6; x + 2$	15. (2-02) Find the minimum of $x^2 - 4x + 6$.
$7. f(x) = 2x^3 + x^2 - 12x + 9; x + 3$	16. (2-01) Simplify $\frac{2+\sqrt{-27}}{1-\sqrt{-9}}$.
8. $f(x) = 6x^3 + 25x^2 + 21x - 10; 2x + 5$	17. (1-10) Find the equation of the best-fitting line for the following table:
List all possible rational zeros for the functions.	x 1 3 5 7
$9. f(x) = 2x^3 - 10x^2 - 2x + 7$	y 1.5 0.5 -0.5 -1.5
$10. f(x) = 8x^4 - 5x^2 - 1x + 4$	18. (1-05) Find the zeros of $f(x) = -3x + 6$.
Problem Solving	19. (1-04) Given the function $g(x) = 2x^2$, evaluate $\frac{g(x+h)-g(x)}{h}$.

11. Find the dimensions of the box where the length is four inches 20. (1-03) Find the equation of the line perpendicular to y = -3x and passing through the point (2, 4).

1. If synthetic division reveals a zero, why could we try that val	ue 7. $f(x) = x^3 - 5x^2 + x - 5$
again as a possible solution? Use the Rational Zero Theorem to find all zeros.	$8. f(x) = x^3 - x^2 + 15x + 17$
$2. f(x) = x^3 - 5x^2 - 2x + 24$	9. $2x^4 - 9x^3 + 11x^2 + 7x - 15 = 0$
$3. f(x) = x^3 - 6x^2 + 3x + 10$	Use Descartes' Rule of Signs to determine the possibl number of positive and negative solutions.
$4.\ 2x^3 - 5x^2 - 11x - 4 = 0$	$10. f(x) = 3x^4 - 5x^2 + 1$
5. $3x^4 - 2x^3 - 9x^2 + 12x - 4 = 0$	$11. f(x) = x^3 + 2x^2 + x - 3$
$6. f(x) = x^3 + x^2 - 12x - 12$	

$12. f(x) = 12x^5 - 3x^4 + 2x^2 - 5x + 1$	Mixed Review
Write a polynomial function of least degree possible using the given information.	16. (2-05) Use the factor theorem to find all real zeros for the given polynomial function and one factor: $f(x) = x^3 + 5x^2 - 2x - 24$; $x + 4$.
13. Zeros: 2 (with multiplicity 2) and -3 ; $f(1) = 12$	·
14. Zeros: $\frac{1}{2}$, 2, $-3i$; $f(0) = 36$	17. (2-05) List all the possible rational zeros of $h(x) = 4x^4 + x^3 - 2x - 6$.

Problem Solving: Find the dimensions of the box described. 18. (2-04) Divide with long division: $(2x^3 - 5x^2 - x + 1) \div (2x + 1)$.

15. Find the dimensions of the box with the length is 4 inches more 19. (2-03) Determine the end behavior of $j(x) = -x^3 + 510$. than the width. The width is 1 inch more than the height. The volume is 300 cubic inches. 20. (2-02) Use the vertex (3, 2) and a point on the graph (2, 1) to

find the general form of the equation of the quadratic function.

2-07 Asymptotes of Rational Functions 11. $g(x) = \frac{4x^3 + 6x^2 - x + 12}{2x^2 - 4x + 1}$ Find the domain of the rational functions. 1. $f(x) = \frac{x-3}{x^2-49}$ Identify the removable discontinuity. 2. $g(x) = \frac{x^2 + 7x + 12}{x^4 - 5x^2 + 4}$ 12. $y = \frac{x^2 - 25}{x + 5}$ Find the domain, vertical asymptotes, and horizontal 13. $f(x) = \frac{x^2 - x - 6}{x^2 + x - 12}$ asymptote of the functions. 14. $g(x) = \frac{2x^3 + 4x^2 - 16x}{x^3 - x^2 - 2x}$ 3. $y = \frac{3}{2x-5}$ 4. $f(x) = \frac{2x}{x^2 + 6x - 27}$ Problem Solving 5. $g(x) = \frac{2x-3}{x^3-4x}$ 6. $k(x) = \frac{x^2 - 25}{2x^2 + 9x - 5}$ 7. $y = \frac{4-2x}{5x+4}$ Mixed Review

Describe the end behavior of the functions.

8. $f(x) = \frac{2x}{x+1}$

9. $y = \frac{2x^2 - 32}{6x^2 - 13x - 5}$

Find the slant asymptote of the functions.

10. $f(x) = \frac{x^2 - 4}{x + 1}$

15. To produce the next popular toy, a company has to pay a factory \$50,000 to set up the production line. They also have to pay \$5 per item for the raw materials and labor. Write a function for the average cost to produce x items. Then describe what happens to the average cost as the factory produces a large number of toys.

16. (2-06) Find all the zeros of $m(x) = x^3 - 2x^2 + 16x - 32$.

17. (2-06) Find all the zeros of $n(x) = x^4 - 2x^3 - 6x^2 + 6x + 9$.

18. (2-05) Divide with long division: $(x^3 + 2x^2 - 7) \div (x^2 + x + 1)$.

19. (2-03) Graph $q(x) = x^3 + 2x^2 - 7$

4. $m(x) = \frac{2x-3}{x+1}$

5. $r(x) = \frac{1}{(x-2)^2}$

20. (1-06) Identify the parent function, then use a graphing utility to graph the function. Be sure to choose an appropriate viewing window. $r(x) = \frac{2}{x+1} - 2.$

Find the (a) x-intercepts, (b) the v-intercept, (c) the vertical

asymptotes, and (d) the horizontal or slant asymptote of the functions. (e) Use that information to sketch a graph.

2-08 Graphs of Rational Functions

1. Can a graph of a rational function have no x-intercepts? If so, how?

Find the x- and y-intercepts for the functions.

2. $f(x) = \frac{x}{x^2 + 2x}$

6. $s(x) = rac{2x^2+5x-3}{2x^2-2x-4}$	
7. $t(x) = rac{x^2+3x-4}{x^2-3x+2}$	
8. $w(x) = rac{x^2-2x-3}{x-1}$	
9. $g(x) = rac{(x-4)(x-1)(x+2)}{(x-2)^2(x+1)}$	

Write an equation for a rational function with the given characteristics.

10. Vertical asymptotes at x = 3 and x = -4, x-intercept at (1, 0), yintercept at $\left(0, \frac{1}{6}\right)$

Use the graphs to write an equation for the function.

	1191			
	- 5			
	1			
	- 1			
	- 2	/		
		Ÿ		
8-6-4-3-2		-		
	-1		1	• •
	-2		/	
	11 1			

11

12.

6 -5 -4 -	3 -2 -10 1 2 3 4 5 -1
	-2
	-3
	-5

	/		5	
			3	
	8-5-	* -*	2 -1 8	5 4 5 4
4.			-3	

1

Problem Solving: Write a rational function that describes the situation

15. A large mixing tank at a frosting factory currently contains 500 gallons of water, into which 12 pounds of sugar have been mixed. A tap will open, pouring 15 gallons of water per minute into the tank at the same time sugar is poured into the tank at a rate of 2 pounds per minute. Find the concentration (pounds per gallon) of sugar in the tank after t minutes.

Mixed Review

16. (2-07) Find the slant asymptote of $f(x) = \frac{x^2+4}{x-3}$

- 17. (2-06) Use Descartes' Rule of Signs to determine the possible number of positive and negative solutions: $g(x) = x^4 - 6x^3 + 6x^3$ $10x^2 + 2x - 15$.
- 18. (2-06) Find all the complex zeros (real and non-real): $g(x) = x^4$ $-6x^3 + 10x^2 + 2x - 15$.

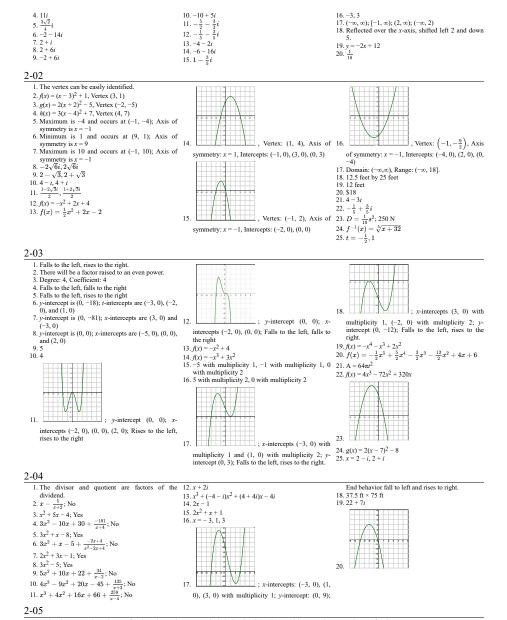
19. (2-01) Simplify (2 - i)(3 + 3i).

20. (1-07) Identify the parent function and describe the transformations: $h(x) = \frac{3}{x-2} + 1$.

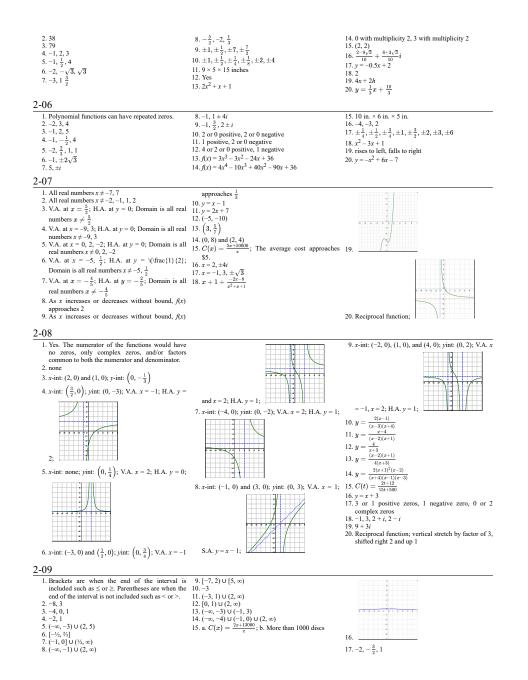
2-09 Nonlinear Inequalities

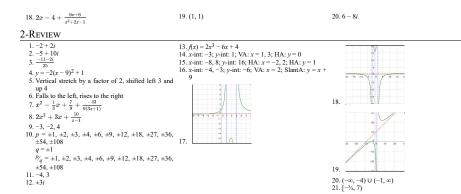
1. When do you use brackets instead of parentheses when writing intervals?	Solve inequalities algebraically.
Find the critical numbers.	5. $x^3 - 4x^2 - 11x < -30$
2. $f(x) = x^2 + 5x - 24$	$6.\ 2 \ge 6x^2 - x$
$3. g(x) = x^3 + 3x^2 - 4x$	7. $0 \leq rac{2x}{2x^2+x-1}$
$4.\ h(x)=\frac{x^2+4x+4}{x-1}$	8. 1 > $\frac{3}{x+1}$

$9.\ 0 \leq \frac{x^2 + 2x - 35}{x - 2}$	piece of office software and \$2.00 to print and package each disc.
Solve by graphing.	a. Write a function for the average cost of each disk.b. How many discs do they have to sell to make the average
$10.\ 0 \ge x^2 + 6x + 9$	cost less than \$15?
11. $0 < x^3 - 7x + 6$	Mixed Review
$12.0 \le \frac{x}{x^2 - 3x + 2}$	16. (2-08) Graph $f(x) = \frac{1}{x^{2}+4}$.
13. 0 > $\frac{x^2 + 4x + 3}{x - 3}$	17. (2-06) Find the zeros of $2x^3 + 5x^2 - x - 6$.
14. $0 < \frac{x+1}{x^3+2x^2-8x}$	18. (2-04) Divide $(2x^3 - x + 10) \div (x^2 + 2x - 1)$.
Problem Solving	19. (2-02) Find the vertex of $y = 2x^2 - 4x + 3$.


20. (2-01) Multiply (3 + i)(1 - 3i). 15. It costs a computer software company \$13,000 to code a new

ke this test as you would take a test in class. When you are fini-	shed, check your work against the answers.
Simplify	12. Find the rest of the zeros of $f(x)$ including any complex zero
	 Find a polynomial function with real coefficients that has t following zeros: 1 (with multiplicity 2) and -2 and (2, f(2))
2. $(2-i)(-4+3i)$	(2, 8).
3. $\frac{2-i}{-4+3i}$	Find the intercepts and asymptotes of the following functions.
4. Write the equation of the parabola with a maximum at $(9, 1)$ and goes through the point $(8, -1)$.	14. $f(x) = rac{x+3}{x^2-4x+3}$
5. Describe how the graph of $g(x) = 2(x + 3)^2 + 4$ is transformed from $f(x) = x^2$.	2-4
6. Describe the left and right-hand end behavior of $f(x) = x^9 - 16x$.	16. $f(x) = \frac{x^2 + 7x + 12}{x - 2}$ Graph the following functions.
7. Divide with long division $(3x^3 + 2x - 4) \div (3x + 1)$.	17. $f(x) = \frac{x+3}{x^2-4x+3}$
8. Divide with synthetic division $(2x^3 + x^2 - 3x + 10) \div (x - 1)$.	18. $f(x) = \frac{x^2 - 64}{x^2 - 4}$
9. Use the Factor Theorem to find all the real zeros for the given polynomial function and one factor: $x^3 + x^2 - 14x - 24$; $x + 2$	19. $f(x) = \frac{x^2 + 7x + 12}{x - 2}$
For the following questions use $f(x) = x^4 + x^3 - 3x^2 + 9x - 108$.	Solve the nonlinear inequalities.
10. List all the p 's, q 's, and possible rational zeros of $f(x)$.	$20. x^2 + 5x + 9 > 5$
11. Find all the rational zeros of $f(x)$.	21. $\frac{x+10}{x-7} + 1 \le 0$


ANSWERS 2-01


 Add the real parts together and the imaginary parts together; combine like terms.

Imginary			Т	Т	1		Г
					-2	+ :	Γ.
							Γ.
							Ľ,
							Γ.
 Real							
 123480		- 5		1	۰ ه	2	
							P*
							10
 •				t			1.3
 -64							14
 * * * * * *	2	- 1-	-	+			-

1. Rational zeros can be written as fractions, but real zeros include irrational numbers which cannot be written as fractions.

